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We report on a procedure to improve the resolution of far-field imaging by using a neighboring high-indexmedium
that is coated with a left-handed metamaterial. The resulting plot can also exhibit an enhanced transmission by
considering proper conditions to retract backscattering. Based on negative refraction, geometrical aberrations are
considered in detail since they may cause a great impact in this sort of diffraction-unlimited imaging by reducing
its resolution power. We employ a standard aberration analysis to refine the asymmetric configuration of meta-
material superlenses. We demonstrate that low-order centrosymmetric aberrations can be fully corrected for a
given object plane. For subwavelength-resolution imaging, however, high-order aberrations become of relevance,
which may be balanced with defocus. Not only the point spread function but also numerical simulations based on
the finite-element method support our theoretical analysis, and subwavelength resolution is verified in the image
plane. © 2012 Optical Society of America

OCIS codes: 110.2990, 160.3918, 220.1000.

1. INTRODUCTION
An asymmetric flat superlens is a film made of a left-handed
metamaterial (LHM) that is deposited on a smooth, transpar-
ent body such as glass with positive dielectric constant. There-
fore the object space has an index of refraction (IR) different
from that in the image space, leading to an asymmetric ar-
rangement. Originally, this idea was conceived because using
a solid substrate, this imaging device will be mechanically
much more stable than a layer sustained in free space [1].
There, only asymmetric silver superlenses were analyzed in
detail, for which amplification of evanescent waves sustained
by surface waves is more favorable if the real part of the di-
electric constant of the metal and the substrate matches
except for its sign.

In the case that the lensing flat slab shows effectively a ne-
gative permeability, negative refraction allows imaging mainly
using homogeneous waves. Moreover, if the IR of the output
medium is higher than that IR corresponding to the medium
surrounding the object, some evanescent waves emitted by
the source become homogeneous after passing through the
lens. This fact allows the formation of far-field images with
subwavelength resolution.

Unfortunately there is no perfect image plane in the asym-
metric arrangement and the image suffers from aberrations.
Note that the root of aberrations in symmetric superlenses
is diverse and may be caused by materials having an impe-
dance (and IR) not matched to free space [2,3], material losses
[4,5], because the equifrequency curve is slightly deformed
from an ideal spherical shape particularly for large angular
components [6,7], and caused by the anisotropic effect from
nonmagnetic anisotropic media [8,9]. Here we focus on the IR
mismatching that comes naturally in the asymmetric config-
uration. Moreover, Seidel aberrations have been discussed

in different kinds of imaging nanostructures like metallodi-
electric photonic crystals (PCs) [10,11], negative-refractive
lenses fabricated out of a silicon-on-insulator PC slab [12],
graded PC lenses [13], and spherical lenses composed of
LHMs [14,15]. In the previous examples, nonapertured super-
lenses are usually considered and oblique aberrations may be
disregarded. Finally, in order to avoid this awkward situation,
a transformation design of optical elements that perform ima-
ging has been proposed, free from geometric aberrations [16],
though it seems far from being experimentally demonstrated.

In this paper we investigate the effects of primary spherical
aberration (SA) and higher-order SA in LHM asymmetric
lenses. In Section 2, primary SA is corrected for a given object
plane; however, some residual aberrations for nearby ob-
ject planes remain. This effect is not observed in perfect
symmetric lenses since it is caused by the breaking of the
shift invariance along the optic axis driven by asymmetry
of this new imaging problem. In Section 3 we show that
the unbalanced arrangement allows proper conditions to re-
tract backscattering. The diffractive behavior of SA-corrected
metamaterial coatings are disclosed in Section 4 by using
electric dipole fields. Here we demonstrate subwavelength
capabilities in far-field imaging. In Section 5 we provide the
point spread function (PSF) of such antireflection superlenses
and we estimate the limit of resolution unambiguously. Final-
ly, the main conclusions are outlined in Section 6.

2. SPHERICAL ABERRATION IN FLAT
LENSES
Let us consider the asymmetric flat lens shown in Fig. 1. A
point object O1 is suspended at a distance s1 from the front
face of the superlens made of a material exhibiting negative
IR, n2 < 0. Assuming that the object space is characterized by

1992 J. Opt. Soc. Am. A / Vol. 29, No. 9 / September 2012 Zapata-Rodríguez et al.

1084-7529/12/091992-07$15.00/0 © 2012 Optical Society of America



an IR n1 > 0, and that the width d of the lens is sufficiently
large, a real Gaussian image O2 is formed inside the LHM
[17]. Traveling through the lens exit surface we reproduce
the secondary, outlying image at O3 in a semi-infinite dielec-
tric of IR n3. Provided the IR in the image space turns out to be
positive, n3 > 0, the image point O3 is also real, which is lo-
cated at a distance s3. Note that we employ oriented axial dis-
tances, i.e., s1 < 0 and s3 > 0 for a real object and a real image,
respectively. Also the lens width d > 0.

For a nonapertured setup, the chief ray joins the points O1,
O2 and the Gaussian image O3 by means of the same straight
line. Let us evaluate the aberration of a ray passing through
the point P2, which is placed on the exit surface at a height
h2, with respect to the chief ray. This aberration is estimated
by the optical-path difference of both light rays, i.e., W �
n1�O1P1 − O1Q1� � n2�P1P2 − Q1Q2� � n3�P2O3 − Q2O3�. Note
that O1Q1 � −s1, Q1Q2 � d, and Q2O3 � s3. Finally, this ray
aberration reads approximately [18]

W�h2� ≈ 0a20h
2
2 � 0a40h

4
2 � 0a60h

6
2: (1)

The aberration terms 0a20, 0a40, and 0a60 are attributed to de-
focus, primary SA, and fifth-order SA, respectively. These
aberration coefficients are evaluated by using the geometrical
relations tan σ1 � h1 ∕ s1 and tan σ2 � �h1 − h2� ∕ d, and the
Snell law

n1 sin σ1 � n2 sin σ2: (2)

In particular, the Gaussian image plane is given under the con-
dition 0a20 � 0, which yields

s3 � n3

�
s1
n1

−
d
n2

�
: (3)

Therefore an axial displacement of the object point O1 chan-
ging s1 leads to an image shift following a direct proportion, as
shown in Fig. 2(a). Note that a real paraxial image O3 is at-
tained with the condition d ≥ s1n2 ∕n1, that is, if the secondary
paraxial image O2 is also a real image.

At the Gaussian image point O3, where Eq. (3) is satisfied,
the aberration coefficient for primary SA gives

0a40 �
n1n2�n3

1�n2
2 − n2

3�d� n3
2�n2

3 − n2
1�s1�

8n2
3�n1d − n2s1�4

: (4)

Equation (4) is obtained from Eq. (1) by using a Taylor expan-
sion of W around h2 � 0. This result is slightly different if the
aberration is calculated surface by surface, and the aberration

of the flat lens is obtained by adding the aberration contribu-
tions of all its surfaces [18]. Note that primary SA cannot be
totally corrected for 0 ≤ −s1 < ∞ when n1 � n3 except for the
perfect lens, where additionally n2 � −n3. This is a well-
known case where high-order aberration coefficients also
vanish leading to stigmatic imaging. Also a plane-parallel
asymmetric plate may be corrected of primary SA. Provided
the equation 0a40 � 0 is satisfied, we obtain a linear relation-
ship between the lens width d and the on-axis object distance

s1 �
n3
1�n2

3 − n2
2�

n3
2�n2

3 − n2
1�
d; (5)

in terms of the IRs of the media involved. A given flat lens
cannot be corrected of primary SA for more than one object
plane, as shown in Fig. 2(b), and therefore images originated
from scatterers that fail to keep Eq. (5) suffer from SA.
Furthermore, the primary SA coefficient 0a40 diverges for
the limiting case s3 � 0, excepting when n1 � −n2, leading
to perfect geometric imaging. Therefore quality of the (real)
image improves as the (real) object point O1 come close to
the input surface.

In Fig. 3, we plot a ray tracing for a flat metamaterial lens of
n2 � −2 surrounded by object and image media of IRs n1 � 1
and n3 � 4. Fixing the lens width d, Eqs. (3) and (5) provide
the values s3 � 1.6d and s1 � −0.1d, respectively. The corre-
sponding ray tracing is shown in Fig. 3(a). Stigmatic imaging
may produce a convergent focused beam of numerical aper-
ture n3 sin α � n1 that leads to an angular semiaperture
α � 14.5°. In our case, the numerical aperture is slightly re-
duced down to an effective value αeff � 10.9° caused by non-
corrected high-order aberrations. To inspect the deterioration
of the image due to SA effects, we also present in Fig. 3(b) the
ray tracing for a point object placed at s1 � −0.4d further from
the lens entrance surface. We observe a ray distribution that is
barely confined around the Gaussian image point O3, repre-
sented as a green dot in the image space. As a limiting case,
we plot in Fig. 3(c) the trajectories of rays emerging from a
point that is located at s1 � −0.5d that leads to j0a40j → ∞.

We point out that Eq. (5) gives a negative value of s1
provided that the IR n3 in the image plane is either higher

n1 n2 n3

O1 O2 O3
h1

h2

P1

P2

Q1 Q2

d

σ1

σ2 σ3

s1 s3

Fig. 1. (Color online) Schematic representation of an asymmetric
flat lens of refractive index n2 and width d.
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Fig. 2. (Color online) Geometrical imaging for a flat lens of n2 � −2
sandwiched between dielectric media of indices of refraction n1 � 1
and n3 � 4. (a) Gaussian imaging based on Eq. (3). (b) Red line
represents primary SA given by Eq. (4) and blue line represents
fifth-order SA given by Eq (6).
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or lower than n1 and jn2j simultaneously. In order to achieve a
subwavelength effect, we aim for transforming evanescent
waves emitted by the source O1 into homogeneous wave
modes in the image space. In this case it is preferable for a
high-index transparent medium n3 > n1 to register the image.

The aberration coefficient 0a60 for the fifth-order SA may be
estimated analytically. Provided Eqs. (3) and (5) are satisfied,
this high-order SA coefficient gives

0a60 � −
n13
1 �n2

1 − n2
3��n2

2 − n2
3�6

16n2
2n

14
3 �n2

2 − n2
1�5s51

: (6)

Therefore, assuming n1 ≠ n3, 0a60 vanishes only for the follow-
ing trivial solutions: (1) imaging under mirror-symmetry nega-
tive refraction on the output surface when n3 � −n2 and
s1 � 0, and (2) incidence of a collimated bundle of rays for
which s1 tends to infinity. Excepting these special cases,
fifth-order SA cannot be corrected. In Fig. 2(b) we present
j0a60j for a given numerical example.

To conclude this section, let us make an explanatory re-
mark concerning the IRs of the media involved on the analysis
of the image formation. The ratio n3 ∕n1 − 1 provides the rela-
tive enlargement of spatial bandwidth corresponding to eva-
nescent waves in the object space that are transformed into
homogeneous plane waves in the image space. This is clearly a
subwavelength effect, which has been exploited elsewhere
[19]. In image formation, this physical phenomenon leads to
a superresolving effect, which will be developed in Section 5.
On the other hand, we point out that the value of n2 is arbi-
trarily chosen provided it takes a negative value. In fact, this is
a degree of freedom that may be profited at the time of impos-
ing an additional constraint of interest.

3. CONTROL OF REFLECTION LOSSES
In order to take a suitable choice for the value of n2, we con-
sidered the reflection and transmission properties of light that
impinges obliquely onto the LHM thin film, which has been

deposited on top of the transparent substrate. The coefficient
of reflection (r) and the coefficient of transmission (t) evalu-
ated from the object plane in front of the asymmetric layered
lens to the image plane are [20]

r � r1;2 � r2;3 exp�2iβ2d�
1� r1;2r2;3 exp�2iβ2d�

exp�−2iβ1s1�; (7a)

t � t1;2t2;3 exp�−iβ1s1 � iβ2d� iβ3s3�
1� r1;2r2;3 exp�2iβ2d�

: (7b)

Here the propagation constant is

βi � σi

����������������������������������
εiμik20 − k⃗⊥ · k⃗⊥

q
; (8)

where σi � 1 for the dielectrics and σ2 � −1 for the LHM, k0 �
2π ∕ λ0 is the wavenumber in vacuum, and εi and μi stand for
the relative permittivity and permeability of the media in-
volved, respectively. Also k⃗⊥ � �kx; ky� is the transverse wave
vector, i.e., the projection of the wave vector of the incident
field over a plane that is parallel to each flat-lens interface.
The Airy’s formulae (7) depend on the reflection coefficient
at a single interface,

ri;j �
μjβi − μiβj
μjβi � μiβj

; (9)

which is valid for s-polarized waves. For p-polarized waves,
ri;j � �εjβi − εiβj� ∕ �εjβi � εiβj� applies directly to the trans-
verse magnetic field. In all cases, they also depend on the
transmission coefficient ti;j � 1� ri;j .

A LHM layer with

β2d � −�2m� 1�π ∕ 2; (10)

for m � 0; 1; 2… can be used to eliminate the reflection of
light completely, which is intrinsically a dispersive phenomen-
on depending upon k0. This is commonly denominated an anti-
reflecting coating. For that purpose we additionally impose
r1;2 � r2;3 in Eq. (7a), leading to r � 0. This condition is satis-
fied if

β22μ1μ3 � μ22β1β3; (11)

assuming that the wave fields are s-polarized. For normally
incident light, i.e., k⊥ � 0, Eq. (11) is simply Z2

2 � Z1Z3, where
Zi is the intrinsic impedance of the medium i. Obviously, this
equation for zero reflectance is a result that applies for all
states of polarization. Moreover, assuming that μi � σi, we fi-
nally obtain a condition n2 � −

�����������
n1n3

p
involving the IRs of all

media. Note that the latter equation is held in simulations
shown in Fig. 2, and it is well-known in the theory of antire-
flecting films when its IR is jn2j. Finally, a quarter-wave layer
satisfying Eq. (10) with d � λ2 ∕ 4��mλ2 ∕ 2 for m ≠ 0�, being
λ2 � λ0 ∕ �−n2�, is of interest.

In Figs. 4(a)–4(c), we show the transmission coefficient t
that has been evaluated for s-polarized waves and superlenses
of different widths. Optimum geometrical conditions are as-
sumed under all circumstances, where Eqs. (3) and (5) are
satisfied. We observe that jtj ≈ 0.5 for k⊥ � 0 in all cases

LHM

LHM

LHM

(a)

(b)

(c)

Fig. 3. (Color online) Ray tracing for an object point located at
(a) s1 � −0.1d, which is corrected of primary SA, (b) s1 � −0.4d,
and (c) s1 � −0.5d from the front surface of a flat lens of width d.
Indices of refraction are the same as in Fig. 2. Traces corresponding
to paraxial (slope lower than 30°) and nonparaxial rays are drawn in
different colors. Small light-colored stars represent conjugated points.
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and, therefore, reflection is extinguished (Transmittance for
s-polarized waves is Ts � jtj2n3 ∕n1). However, reflectance
might have a certain significance in higher spatial frequencies.
We also observe a flat variation of the argument of t for
k⊥ < k0, which is a consequence of eliminating primary SA.
For ultrathin slabs, however, jtj is of relevance at higher fre-
quencies. By considering a boundless medium of IR n1 � 1,
note that there is no time-averaged power flow for k⊥ > k0.
The field intensity within this spectral domain, in the presence
of the superlens, is by no means zero, and transmittance might
reach values higher than unity, as seen for m � 0. In these
cases, the time average of the power flow in the object space
is supported partially by evanescent waves that, in principle,
can contribute to the far field. For them, the phase in the spa-
tial spectrum changes by far and, therefore, aberrated images
are expected in the Gaussian image plane. In Figs. 4(d)–4(f),
we also present the transmission coefficient t in amplitude
and phase for p-polarized waves. Finally, from Figs. 4(a)
and 4(d) we observe that those spatial frequencies surpassing
4k0 have a small contribution to the image formation; note that
the wave field also falls off fast in the transit from the output
plane of the lens toward the image plane, thus frustrating a
three-dimensional (3D) focusing [21].

For a slab width much higher than the wavelength, the eva-
nescent waves emitted by the source point O1 cannot reach
the entrance face and homogeneous waves satisfying k⊥ ≤

k0 contribute effectively to the transmitted field in the image
space, as shown in Figs. 4(c) and 4(f) for d � 5.125λ0. De-
creasing d down to values close to λ0 leads to the conversion
of evanescent waves in the medium 1 to homogeneous waves
in the medium 2. In Figs. 4(b) and 4(e), we observe a critical
participation of waves with transverse spatial frequencies
k0 < k⊥ < 2k0 for a lens width d � 0.875λ0. In the limit d �
0.125λ0 associated with m � 0, we include the spatial band-
width into the interval 2k0 < k⊥ < 4k0 involving evanescent
waves in media 1 and 2, which are transformed into homoge-
neous waves in the image space, as seen in Figs. 4(a) and 4(d).
For that reason such a spectral stretching allows a subwave-
length-resolution effect in the formation of far-field images.

4. IMAGING ELECTRIC DIPOLE FIELDS
It is commonly accepted that electric dipole fields, due to their
high spatial confinement, are electromagnetic sources appro-
priate for the examination of the limit of resolution in near-
field superlenses [22,23]. For that purpose we use the field
distribution generated by an infinite line source reducing
3D calculations to a simpler two-dimensional (2D) problem.
The orientation of the line emitter lies along the y-axis, which
is parallel to the input and output surfaces of the thin LHM
coating. The electric dipole field results from elementary point
dipoles with dipole moments, p, which are presumed to be
aligned also in the y direction, as shown in Fig. 5. In an un-
bounded transparent medium of permittivity ε1 and perme-
ability μ1, the electric field may be written as [24]

E⃗ � i
k21p
4ε1

H�1�
0 �k1R0�ŷ; (12)

where k21 � k20ε1μ1, the unit vector ŷ is oriented along the y-
axis, and R0 �

����������������
x2 � z2

p
denotes the distance from the line

source to the point under observation within the plane xz.
Also H�1�

0 is the Hankel function of the first kind, which
may be written in an integral representation as

H�1�
0 �k1R0� �

1
π

Z
∞

−∞

exp�ikxx� iβ1z�
β1

dkx; (13)

for z > 0. Note that ky � 0 here. If we consider the electric
field that is transmitted through the thin LHM superlens
shown in Fig. 1, assuming that the line dipole is placed at
O1, it finally yields

E⃗ � i
k21p
4πε1

ŷ
Z

∞

−∞

t�kx�
exp�ikxx� iβ3z�

β1
dkx: (14)

In this equation we employ the transmission coefficient t eval-
uated from the object plane to the image plane, which is given
in Eq. (7b), for s-polarized waves. Therefore z � 0 stands for
the image plane.

In Fig. 6, we present the modulus of the electric field jEj
that is emitted by an electric line dipole and that is transmitted
through a LHM lens of μ2 � −1� i0.001 and ε2 � −4� i0.001
and different widths. The flat lens is sandwiched between
media of IR n1 � 1 and n3 � 4. The object point O1 is placed
at a distance s1 � 0.1d from the superlens, following Eq. (5) to
minimize primary SA. We compute the scattered field within
the interval z ≥ −s3 constituting the real image space. The
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Fig. 4. (Color online) Transmission coefficient (modulus and argu-
ment) for (a)–(c) s-polarized waves and (d)–(f) p-polarized waves in a
superlens of μ2 � −1� i0.001 and ε2 � −4� i0.001. Surrounding
transparent media have again indices of refraction n1 � 1 and
n3 � 4. We consider different widths for the LHM flat lens: (a) and
(d) d � 0.125λ0; (b) and (e) d � 0.875λ0; (c) and (f) d � 5.125λ0. Note
that all the horizontal scales are not the same.
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Fig. 5. (Color online) Electric line dipole composed of a continuous
distribution of point dipoles that are oriented in the y direction and
simulating a current I0 flowing along the y-axis.
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numerical simulations were performed using a finite-element
method and also employing Eq. (14) to verify the validity of
our results.

If the superlens has a width d below the wavelength, as
used in Fig. 6(a), one would expect to achieve superresolu-
tion. In this case, however, the FWHM of the modulus of
the electric field in the Gaussian image plane yields Δx �
0.69 in units of λ0, even exceeding the limit of resolution ap-
plied to diffraction-limited systems. In order to understand
such a behavior, we analyze the transmission coefficients
plotted in Fig. 3(a). We observe that the phase is stabilized
for jkxj < k0, but it has a fast decreasing variation for higher
spatial frequencies. In this sense, the effective bandwidth in
the transmission coefficient for frequencies associated with
inhomogeneous waves in the medium 1 is, in practical terms,
three times larger than the bandwidth for homogeneous
waves; therefore the unbalanced contribution of the different
spatial frequencies will make the image recovery difficult. A
simple defocus provoked by a shift of the image plane toward
the LHM lens serves to diminish the phase variation and aber-
ration effects in the image. Exactly at the exit surface of
the superlens, the FWHM of the electric field is Δx � 0.086,
leading to a subwavelength resolution.

A different behavior is expected for d ≈ λ0. Figure 6(b)
illustrates the diffraction behavior of a thin LHM film in the
case that d � 0.875λ0; that is, m � 3 in Eq. (10). The limit
of resolution has decreased substantially in the Gaussian im-
age plane, whereΔx � 0.38. Taking in mind the results shown
in Fig. 3(b), this superresolving response is attributed to eva-
nescent waves in medium 1 that are converted into homoge-
neous waves in medium 2, which belong to the spectral range
k0 < jkxj < 2k0. In this spectral band, however, the coefficient
of transmission presents some strong variations in its phase,
preventing us from the observation of an aberration-free im-
age. Moreover, the phase of the transmission coefficient in-
creases with kx so that a defocus is expected to balance
high-frequency aberrations. Contrarily to the previous case,

the on-axis shift must be performed moving far from the
LHM lens in order to achieve the minimum spot size. In prac-
tice, the resolution improvement that is attainable with defo-
cus may be considered negligible.

Finally, if d � 5.125λ0, as shown in Fig. 6(c), the FWHM of
the central lobe in the paraxial image plane yields Δx � 0.56
in units of λ0, which is close to the diffraction limit, λ0 ∕ 2. In
this case, the depth of focus is significantly short, which al-
lows the evaluation of the FWHM along the z-axis. This gives
Δz � 9.81, also in units of λ0. We conclude that the focused
wave field is localized much stronger in the transverse direc-
tion than on axis.

The analysis that we have carried through in Section 4 so
far is essentially for s-polarization. We point out that a similar
p-polarization analysis is also possible based on magnetic di-
poles aligned along the y-axis. For that purpose, now we con-
sider a line source with a uniform distribution of elementary
magnetic dipole moment m, which is placed at O1, and for
which the magnetic field in the image space is simply

H⃗ � i
k21m
4πμ1

ŷ
Z

∞

−∞

t�kx�
exp�ikxx� iβ3z�

β1
dkx: (15)

Making use of the duality theorem [24], here t from Eq. (7b) is
evaluated for p-polarized waves. Again z � 0 stands for the
image plane. In Fig. 7, we present the modulus of the magnetic
field as it is transmitted through the same LHM lens of μ2 �
−1� i0.001 and ε2 � −4� i0.001. By comparing the wave
field in Fig. 7 with the scattered field represented in Fig. 6,
for different widths of the LHM slab, we conclude that discre-
pancies are appreciable, in general, which are clearly attrib-
uted to departures in the coefficient of transmission t for both
polarizations. Also we find that the spot size of the wave field
is lower for magnetic dipoles. For convenience, let us leave in
Section 5 the discussion concerning how polarization impacts
upon the limit of resolution of LHM coatings.

5. PSF AND LIMIT OF RESOLUTION
In order to estimate the limit of resolution unambiguously,
we follow a different approach that is based on the impulse
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Fig. 6. (Color online) Modulus of the electric field emitted by a
line electric dipole and transmitted through a negative-index slab
with μ2 � −1� i0.001 and ε2 � −4� i0.001 and different widths:
(a) d � 0.125λ0, (b) d � 0.875λ0, and (c) d � 5.125λ0. In all cases
we present the field within z ≥ −s3. The density plots are normalized
to unity at the paraxial image point �x; z� � �0; 0�. The dashed line in-
dicates points where amplitude falls off 1 ∕ 2. The thin vertical line
marks the Gaussian image plane. The wave fields corresponding to
the Gaussian image plane for (a), (b), and (c) are plotted in (d),
(e), and (f), respectively.
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Fig. 7. (Color online) jH⃗j from Eq. (15) as it is evaluated in the image
space of a LHM flat lens with μ2 � −1� i0.001 and ε2 � −4� i0.001
and different widths: (a) d � 0.125λ0, (b) d � 0.875λ0, and
(c) d � 5.125λ0. Again, the fields in the Gaussian image plane for
(a), (b), and (c) are plotted in (d), (e), and (f), respectively.
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response of the optical system, also known as the PSF. This
procedure may be carried out assuming that the imaging de-
vice under consideration is a linear and shift invariant (LSI)
system. Note that a scattered field transmitted through a stack
of dielectric-LHM layers remains unchanged in shape and
magnitude if the scatterers are displaced in any direction that
is parallel to the surfaces. Therefore the asymmetric LHM flat
lens that we are considering is a LSI system in 2D. Moreover,
the impulse response of the LHM superlens depends on the
state of polarization of the wave field and, therefore, we
may evaluate the PSF for p-polarized and s-polarized waves,
independently. This is discussed thoroughly in [25], and here
we only give a brief summary.

Based on the angular spectrum representation of the scat-
tered field, for s-polarized waves, the electric field E⃗ in the
image space may be expressed as a 2D convolution,

E⃗�R⃗⊥; z� � E⃗sc�R⃗⊥� � h�R⃗⊥; z�; (16)

where Esc is the wave field at the object plane and R⃗⊥ � �x; y�
stands for a space-domain 2D vector that is perpendicular to
the unit vector ẑ. Strictly speaking, Eq. (16) is not restricted to
scatterers that are located at the object plane. The scalar 3D
PSF is

h�R⃗⊥; z� �
1

�2π�2
ZZ

t�k⃗⊥� exp�ik⃗⊥R⃗⊥ � iβ3z�dk⃗⊥; (17)

and is derived by using the transmission coefficient that cor-
responds to the object plane and its conjugate image plane as
given in Eq. (7b). Note that h�R⃗⊥; z > 0� for t � 1 represents
the propagator of the first Rayleigh–Sommerfeld integral, and
it is related with a divergent wave whose focus is placed in the
center of the image plane z � 0 [26].

In fact, for symmetric flat lenses where n1 � n3, Eq. (16)
may be set as a 3D convolution by virtue of its property of
shift invariance along the z-axis [25]. However, asymmetric
flat lenses are not invariant under displacements on the optic
axis. This is in agreement with our discussion in Section 2 con-
cerning the correction of primary SA, which is achieved in a
unique object plane.

In order to compare the PSF with the electric-field re-
sponse of the LHM lens over a line electric dipole, calculated
from Eq. (14), it is more appropriate to derive the PSF in 2D;
that is,

h2�x; z� �
1
2π

Z
∞

−∞

t�kx� exp�ikxx� iβ3z�dkx: (18)

In Fig. 8, we present the 2D PSF for the same superlens con-
sidered, for instance, in Fig. 6. One more time, the object plane
is placed at a proper distance s1 to compensate primary SA.
We find again that the diffractive behavior of a slab width d
below the wavelength differs substantially from that lens with
d ≫ λ0. Additionally, the impulse response is notably differ-
ent for s-polarized waves and p-polarized waves. Note that
the PSF for p-polarized waves is computed by using in
Eq. (18) the corresponding coefficient of transmission t.
The FWHM of the PSF central lobe for s-polarized waves takes
higher values than those evaluated for p polarization, espe-
cially in ultrathin LHM layers. For instance, if d � 0.125λ0,

shown in Fig. 8(g), the FWHM of the PSF in the Gaussian
image plane yields Δx;s � 0.83 in units of λ0, for s-polarized
waves, which is much higher than the FWHM encountered
for p-polarized waves, Δx;p � 0.23. However, differences de-
rived by the state of polarization are negligible in the case
d � 5.125λ0, as shown in Fig. 8(i). From Figs. 8(c) and 8(f),
we conclude that this is true not only in the Gaussian image
plane but also in out-of-focus planes.

Note that the FWHM from the PSF is slightly greater than
that obtained in Section 4 from a line dipole. It is worthy to
point out that a similar effect has been reported when com-
paring the PSF and the image of a subwavelength Gaussian
beam in metal-dielectric multilayers [27]. In both cases, the
explanation is nevertheless not difficult. The broader PSF
has an irregular phase variation, not shown in Fig. 8, which
is of critical relevance in the convolution given in Eq. (16).
In a similar manner, fast changes in the phase of an incident
wave field may lead to severe distortions in the image space.
Obviously, phases of input fields and phases of PSFs would
not play a role if the undulatory superposition (16) were
fully incoherent. As a consequence, subwavelength signals
transmitted by LHM coatings occasionally yield anomalous
localized distributions whose FWHMs surpass the limit of
resolution determined by the PSF.

6. CONCLUSIONS
We analyzed LHM superlenses in an asymmetric arrangement,
focusing on primary aberrations and backscattering effects.
Both are unwanted effects derived from impedance mismatch
at boundaries. The IR of the LHM satisfying the antireflection
coating condition n2 � −

�����������
n1n3

p
minimizes backscattered

light. Provided that d � �1� 2m�λ0 ∕ �−4n2� and assuming that
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with μ2 � −1� i0.001 and ε2 � −4� i0.001 for different states of
polarization: (a)–(c) applies for p-polarized waves and (d)–(f) for s
polarization. In (g)–(i), we chart the data for the Gaussian image
plane. The slab width is also varied: d � 0.125λ0 for subfigures placed
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losses in the metamaterial are negligible, reflection of light at
normal incidence is completely eliminated. To avoid primary
SA, we show that the object plane will be placed at an appro-
priate distance from the front interface of the superlens.
Nevertheless residual aberrations come out in the Gaussian
conjugate plane, especially for slabs with a subwavelength
width. Proximity of the source from the entrance surface of
the lens and of the image from the exit interface, as it is
compared with the wavelength, are crucial in order to exhibit
a subwavelength resolution. Under these circumstances, coat-
ing superlenses may recover subwavelength information
from the scattered wave field. Balancing residual aberrations
may lead to focal shifts to achieve an impulse response of
least spot size. Both finite-element analysis and PSF are
used to estimate the limit of resolution for s-polarized and
p-polarized waves.
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